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The spin-down of a barotropic axisymmetric vortex, such as observed in laboratory 
models, is examined analytically. In  addition to  the classical, self-similar Ekman 
decay due to viscous effects (Greenspan & Howard 1963), which is characterized by 
an azimuthal velocity profile with the position of its maximum velocity fixed and a 
decay time equal to  the Ekman timescale, the effects of nonlinearity and a free 
surface are considered separately. 

The Ekman circulation in the radial and vertical planes whose strength is 
determined by the vorticity of the overlying fluid, leads to radial advection of the 
azimuthal velocity. This nonlinearity results in a nonlinear kinematic wave equation 
for the circulation and leads to the outward/inward propagation of the position of 
maximum azimuthal velocity for cyclonic/anticyclonic vortices. The associated 
steepening of the azimuthal velocity profile may lead to  a shock formation when the 
absolute vorticity of the initial profile is negative at a certain radius. For anticyclonic 
vortices having a monotonically increasing angular velocity profile this shock 
formation occurs a t  the core. For such vortices (or arbitrary cyclonic vortices) this 
dynamical ‘breaking ’ criterion is, despite significant differences in the physics 
concerned, identical to Rayleigh’s kinematical criterion for the onset of centrifugal 
instability. 

For a dynamically active free-surface fluid the spin-down of a decaying vortex is 
prolonged by a radially dependent factor proportional to the Froude number. This 
conclusion holds both in a cylinder with a parabolic bottom (mimicking the shape of 
the free surface of a fluid in solid-body rotbption) and in a flat-bottomed cylinder. In  
view of the constancy of background vortibity the former geometry is relevant for a 
comparison to geophysical f-plane vortices. The latter geometry, however, is more 
easily established in a laboratory experiment, but the evolution of the azimuthal 
velocity profile is much more complicated and depends on the initial azimuthal 
velocity profile in a highly convoluted way. 

1. Introduction 
The evolution of axisymmetric vortices in a rotating tank, filled with a 

homogeneous fluid, can be considered as a generalized spin-up, or spin-down 
problem. In  the remainder of this paper we will refer to the decay of vortices relative 
to the solid-body, background flow always as a spin-down process, although, 
technically, one should distinguish between spin-up and spin-down for anticyclonic 
and cyclonic vortices respectively ; a distinction that will be touched upon when 
discussing the difference in stability properties between the two (see $3) .  

In  the classical spin-up problem (described in Greenspan 1968 and Benton & Clark 
1974) it is natural to suppose that the fluid, adjusting itself to a (nearly) impulsive 
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change in angular velocity of the tank, is initially in a state of solid-body rotatjion 
(having a uniform vorticity profile), which may be the state of no-motion, as when 
the fluid is spun-up from rest. More general initial states, in which the vorticity 
profile is non-uniform, may be created by alternative ‘procedures’, in which i t  is not 
the tank whose angular velocity is changed, but in which the fluid acquires a radially 
dependent angular velocity. These procedures are described in the experimental 
studies of Kloosterziel (1990) and Kloosterziel & van Heijst (1992), and consist of 
ways in which barotropic vortices can be created in a rotating tank filled with a 
homogenous fluid by raising an inner cylinder, which is filled with a similar fluid (of 
the same densit,y). The fluid in this inner cylinder has been given a larger or smaller 
angular velocity, either by stirring (creating so-called stirring vortices), or by raising, 
or lowering the depth of the fluid in the inner cylinder (resulting in so-called collapse 
vortices). An alternative, third way consists of adding or withdrawing fluid (leading 
t o  so-called sink vortices). It is observed that the motion rapidly becomes two- 
dimensional and often axisymmetric (Kloosterziel & van Heijst 1992). Under certain 
conditions, non-axisymmetric di- and tripoles are formed directly in the initial phase 
(Kloosterziel & van Heijst 1991 ; van Heijst, Kloost’erziel & Williams 1991). These 
fall outside the scope of the present paper. Instabilities of axisymmetric vortices, 
however, will briefly be discussed in 53. The axisymmetrization of stable elliptical 
vortices appears to be a robust feature of the Euler equations (Melander, McWilliams 
& Zabusky 1987) and may perhaps be operating similarly in the rotating tank at the 
initial, nondescript phase leading to the circularly symmetric ‘initial ’ stat,es 
observed, whose evolution in the subsequent spin-down process is considered here. 

In  spin-up studies (e.g. Greenspan & Howard 1963 and Wedemeyer 1964) angular 
momentum is imparted to, or withdrawn from the fluid in two ways: either by 
friction a t  the sidewall and subsequent diffusion inwards, characterized by a diffusive 
timescale = L 2 / v  (where L is the vortex scale and v the kinematic viscosity) ; or at’ 
the bottom (and, when rigid, surface), which is driving the convective, secondary 
Ekman circulation, characterized by the Ekman timescale TE = 52;lE-f (where SZ, is 
the angular velocity of the rotating tank and E = v/Q,  H 2  is the Ekman number, in 
which H denotes a depth scale). The relative importance of these two processes is 
measured by the ratio of their timescales: TE/Td = J Y ~ ( H / L ) ~  (Watkins & Hussey 
1977). For H / L  < 0(1), this ratio is small for what is (geo)physically the most 
interesting situation, i.e. E 4 1,  corresponding to  a rapidly rotating fluid. Therefore 
it is the Ekman circulation which is determining the evolution of the vortices. 

The Ekman circulation may affect the evolution of the vortex in the interior region 
(i.e. away from frictional boundary layers) in two ways. First, it  acts as a sink or 
source of vorticity, through the compression or stretching of background (in 
geophysical applications termed ‘planetary ’) vortex tubes. Secondly, it may 
contribute directly to the advection of azimuthal momentum - a nonlinear feature. 

The Rossby number, 6 ,  determines the importance of this nonlinearity. In the 
classical spin-up context it is defined as the ratio of the difference in angular 
velocities of the fluid and the tank, AQ, and the angular velocity of the tank, 
a,, : E = AQ/Q,. In  the present generalized spin-down context i t  is defined as t,he ratio 
of the relative angular velocity scale U / L  (where Udenotes the scale of the azimuthal 
velocity field, which is negative for anticyclonic vortices) and the angular velocity of 
the tank Q 0 :  E = U/O,L. For small values of the Rossby number (Is1 4 1) the Ekman 
suction velocity is linearly related to the vorticity of the fluid in the interior directly 
overlying it (i.e. of the fluid a t  the same radial position) (Greenspan 1968). For two 
reasons this is no longer true for 1 ~ 1  = O(1). First., the Ekman suction velocit,y then 
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becomes nonlinearly related to the vorticity of the overlying fluid, as indicated by 
the numerical analysis of Rogers & Lance (1960) for the spin-up of a fluid above an 
infinite disk for arbitrary ratios of angular velocities of the fluid (at ‘infinity’) and 
the wall. Second, the local Ekman suction velocity will no longer be related to the 
interior vorticity field a t  the same location. Even though the application by 
Wedemeyer (1964) and Weidman (1976) of a local relation to a non-uniform angular 
velocity profile (such as appears during spin-up from rest in a rotating rank of finite 
extension) was largely successful, Renton (1979) pointed out a serious failure of this 
model, in that the vorticity field acquires an unphysical maximum at  an intermediate 
radial position. However, notwithstanding Benton’s criticism, the relation between 
the Ekman suction velocity and the interior vorticity is approximately linear over 
a surprisingly large interval of angular velocities (see Greenspan 1968, figure 3.4), 
approximately corresponding to Rossby numbers IeI < 0.6. It is therefore tempting 
to apply this same relation to describe the Ekman suction in the evolution of 
relatively strong vortices too, as did Kloosterziel (1990) and Kloosterziel & van 
Heijst (1992). The evolution equation of the azimuthal velocity profile (essentially an 
inviscid form of Wedemeyer’s 1964 equation), which they thus derived and examined 
numerically, can in fact be solved analytically for an arbitrary initial velocity profile 
($3).  It confirms the outward (inward) propagation of the position of maximum 
azimuthal velocity and associated steepening for a cyclonic (anticyclonic) vortex and 
shows that, under certain conditions on the initial profile, this may lead to  ‘breaking ’ 
(i.e. multivaluedness of the azimuthal velocity profile). The remarkable result, 
arrived a t  here, is that this dynamic criterion for breaking is virtually equivalent to 
Rayleigh’s (1916) kinematic stability criterion. 

The presence of a free surface will introduce additional effects, which may lead to 
a widening of an initial azimuthal velocity profile (in contradistinction to  the effect 
of nonlinearity, discussed above) and to a slow-down of the decay process of the 
vortex. 

The importance of a deformable free surface is measured by the Froude number 
F E s2iL2/gI.. (where y is the acceleration due tp  gravity). The effect of a free surface 
was first discussed for the classical spin-up problem, in a linear context (Is1 $ I ) ,  by 
Greenspan & Howard (1963), who concluded that (in a flat-bottomed rotating tank) 
for small Froude numbers, F << 1 ,  the fluid is spun-up as a solid body, just as in the 
case of a rigid surface, albeit a t  a slightly decreased rate. Cederlof (1988) criticized 
their result, arguing that simple solid-body spin-up in this geometry was due to  a 
cancellation of the true dynamic effect of a deformable free surface by a geometric 
effect caused by the false topography created by the paraboloidal equilibrium surface 
in a rotating flat-bottomed tank, which would also be present for a non-deformable 
surface of the same shape. He subsequently showed that in a cylinder having a 
paraboloidal bottom, exactly similar to the equilibrium free surface, the azimuthal 
velocity field varies quadratically with radius (rather than linearly, as in the solid- 
body context). The total depth of the fluid column (when a t  rest relative to the 
spinning container) in his geometry is thus a constant and can therefore perhaps 
better serve as a laboratory model to study the evolution oi” geophysical vortices on 
an f-plane than a flat-bottomed tank. Besides this, Cederlof may also, less 
importantly, have been motivated in this choice of geometry by the fact that the 
partial differential equation describing the evolution of the free surface now becomes 
separable (as was observed by Berman, Bradford & Lundgren 1983, in a two-layer 
spin-up study), and is readily integrated for arbitrary values of the Froude number. 
I n  this way he was able to  establish the increase of the spin-up timescale by a factor 
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which, depending on radial position, is O(F) .  His analysis can be amended to study 
the evolution of an arbitrary initial vortex profile in a parabolic container as we will 
see in $4. 

Kloosterziel (1990), Kloosterziel & van Heijst (1992) and O’Donnell & Linden 
(1991) independently observed (and the latter authors verified experimentally) that 
for linear (1.1 4 1) spin-up in a flat-bottomed tank the timescale is also increased by 
a factor proportional to  F ,  irrespective of its value. However, in contrast to the radial 
dependence of the spin-up timescale in the parabolic geometry, the fluid still spins- 
up as a solid body and this therefore extends the small-Froude-number result of 
Greenspan & Howard (1963) to arbitrary Froude numbers. 

In  $4 it will be shown that for the flat-bottomed tank also the generalized spin- 
down problem - in this linear (!el @ 1) context - can be described in analytical terms; 
i.e. the evolution of an arbitrary initial azimuthal velocity field can be obtained in 
a closed form for arbitrary values of the Froude number, corroborating numerical 
results by Kloosterziel (1990) and Kloosterziel & van Heijst (1992) and showing, 
specifically, the widening of the initial velocity profile, the increase in decay time and 
the outward propagation of the position of maximum azimuthal velocity. 

The only study allowing simultaneously for nonlinear (Is1 = O(1))  and free-surface 
effects (P = O( 1)) is by Goller & Ranov (1968), who studied the spin-up from rest of 
a free-surface fluid numerically. They showed that spin-up is again delayed, due to 
free-surface effects, in proportionality with the Froude number. This situation does 
not seem to  be analytically tractable and is not further discussed here. 

2. Governing equations 
The axisymmetric flow of a homogeneous fluid in a cylinder rotating with angular 

frequency Q,, about the axis of symmetry (the z-axis), which is aligned with the 
gravitational acceleration direction, is, in cylindrical coordinates ( r ,  6 ,  z ) ,  given by 
the equations of motion : 

-+-+252,u = dv uv 
dt r 

g +f (g r g) + vg , dw lap  
dt p az 

- 

and continuity equation 
aw i a 
az r ar 
-+--(ru) = 0. 

The total derivative is defined as 

d a  a a 
dt at ar aZ - _  - -+u-+w--. 

(2.1 a )  

(2.1 h )  

(2.1 c) 

(2.ld) 

Here u, v and w denote the radial, azimuthal and axial velocity components 
respectively ; p is the uniform density of the fluid; v the kinematic viscosity and g the 
acceleration due to gravity. The pressure, p ,  in the uniformly rotating frame of 
reference, is given as the sum of (i) a reference pressure, pgH, set by the centre depth, 
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H ,  of the uniformly rotating fluid, (ii) a hydrostatic part, -pgz, (iii) the pressure field 
associated with the parabolic shape of the free-surface, which it acquires when the 
fluid is a t  rest relative to the rotating frame, @2ir2, and (iv) the time-dependent part 
associated with the vortex, p'(r, z,  t )  : 

p ( r , x , t )  = pg(H-z)+;ppS2:rz+p'(Y, z ,  t ) .  (2.2) 
The fluid is confined to a region 

O d r G R ,  ( 2 . 3 ~ )  
z,(r) < z < x ,  = H + Q i r 2 / 2 g + 7 ( r , t ) ,  (2.36) 

R being the radius of the tank and z,(r, t )  is the position of the free surface, in which 
y ( r ,  t )  is the time-dependent part associated with the decaying vortex. The bottom of 
the tank is given by the circularly symmetric profile zo(r),  which, in the following, will 
either be flat (z,  = 0 ) ,  or equal to the equilibrium parabolic profile ( z o ( r )  = pS2ir2/2g). 
These equations are non-dimensionalized by use of the following scales (denoted by 
brackets) : 

[u, v ,  w, p, 71 = U[Ei, 1, Ei6, pQOhJ, Q,L/g], (2.4a) 
and 

[Y, X ,  t ]  = [L, H,E-kl; '] ,  ( 2 . 4 b )  

in which the dimensionless Ekman number, E E v/Qo H 2  and aspect ratio, S = H / L ,  
appear, and L and U refer to the vortex length and velocity scales respectively. With 
this choice we acknowledge a priori that for small Ekman numbers (E < 1,  the 
situation we will consider throughout) the circulation is primarily azimuthal, while 
the radial circulation, driven by friction in the Ekman layer, enters only at  O(Ei). 
This implies that the time over which the decay of the initial profile proceeds is also 
prolonged, compared to the rotation period, by a factor E 4 ,  so that time is scaled 
with the Ekman timescale E-k2;1. 

With these scalings (2.1) become (using the same symbols, now understood to be 
non-dimensionalized according to the scheme in (2.4)) 

(2.56) 

( 2 . 5 4  

This introduces two additional dimensionless quantities : the Rossby number 
6 z U/Q,  L and the Froude number F = 52; L2/gH.  The non-dimensional pressure 
(2.2) is given by 

and the fluid is contained within the following non-dimensional domain : 
p = ( l - x + p r 2 + € F p ' ) / ( € F ) ,  (2.6) 

O d r d R ,  
zo d z < x, = 1+!@2+sFy(r,t) ,  

where the dimensionless topography, zo(r ) ,  is either flat or parabolic (;Fr2).  

(2.7a) 
(2.7 b )  
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We can, in view of our basic assumption (Ei < 1) formally set up expansions in 
terms of this small parameter. For the present study it suffices, however, to  set E = 0 
outside boundary layers in (2 .5) ,  since, through our choice of scales, all interesting 
features appear at zeroth order (see Greenspan 1968 and Kloosterziel & van Heijst 
1992). Employing (2.6) we then obtain 

(2.8a, b )  212 8P' e-+2w = -, r ar 

aw i a -+- -((ru) = 0. - _  - 0, 
a2 az r ar 

Equation (2 .8~)  expresses hydrostacy, which implies 

au av 
aZ ax 0, p'(r ,  2 ,  t )  = y ( r ,  t )  and - = - = 

(2.8c, d )  

(2.9a, b )  

vertically uniform pressure and horizontal velocity fields. The continuity equation, 
then, can be vertically integrated. The vertical velocity at  the bottom, however, is 
not only given by the geometrically induced component, uaz,/ar, but also by the 
Ekman pumping velocity, wE, at the top of the bottom Ekman layer (see the 
Appendix). 

Thus, the final equations describing the evolution of the vortex due to nonlinear 
and free-surface effects are given by 

212 ar av c-+2w=- -+2u --(rw)+l = 0 ,  
r ar' at ( l r t r  ) 

ay i a 
at r ar F - + - - ( r u ( 1 + ~ $ r 2 + & y - z o ) )  = wE, 

(2.10a, b)  

(2.10c) 

with the Ekman pump velocity, wE given by (A 4) and (A 5 )  to zeroth and first order 
in the Rossby number respectively and the bottom profile, x,, by 0 or @'rz. The 
prescribed initial condition is given by w(r, 0 )  = wo(r), which is cyclostrophically 
related to an initial free-surface profile by ( 2 . 1 0 ~ ) .  When both free-surface and 
nonlinear effects are small (F < 1 and E < 1) equations (2.10b, c) and (A 4) directly 
imply the decay of the initial profile (Greenspan & Howard 1963) : 

w(r, t )  = vo(r) exp ( - t ) .  

The profile retains its structure, has a fixed peak position and a simple Ekman decay 
timescale. In $53 and 4 we will consider the evolution of an initial vortex when 
nonlinear or free-surface effects come into play and see how these conclusions are 
modified. 

3. Vortex evolution due to nonlinear Ekman circulation (F 4 1)  
When the Froude number is small (F < 1 )  the surface is rigid insofar that it does 

not directly respond to the vertical Ekman pumping at  the top of the bottom 
boundary layer. This mass flux then is entirely turned into a radial mass flux. For 
analytical purposes it will be convenient to first exploit the classical Ekman pumping 
law ( A 4 ) ,  which relates the local Ekman pumping velocity to the local interior 
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vorticity in a linear way. The resulting evolution for the azimuthal velocity in the 
interior can then be evaluated exactly (33.1). I ts  formal limitation ( E  4 1 )  will require 
us subsequently to consider the effect of an improved Ekman pumping velocity, as 
given by the combination of (A 4) and (A 5 ) )  ($3.2). 

3.1. Linear Ekmun pumping 
Inserting (A 4) into (2.10c), setting F = 0, we find the radial velocity to be equal 

to half the azimuthal velocity of the interior. (Note that the azimuthal velocity a t  the 
top of the boundary layer, denoted as v, in the Appendix, is identical to the interior 
azimuthal velocity, w, as used in (2.10)). Inserting this in (2.10b) the evolution of the 
azimuthal velocity is, as noted by Kloosterziel 87 van Heijst (1992), given by an 
inviscid form of Wedemeyer’s (1964) equation : 

av 
at ( l r  :r ) -+v - - ( r v ) +  1 = 0 ,  v(r,O) = v0(y) .  

In  terms of the (scaled) circulation, 

r = &rv, 
= Lr2 and radial coordinate - 2  

this equation takes the form 

( 3 . 1 ~ )  b )  

(3.2a) 

(3.26) 

( 3 . 3 U )  b )  

This is a standard nonlinear hyperbolic equation, the kinematic wave equation 
(Whitham 1974, p. 62), describing nonlinearly propagating waves. I n  this case it is 
the peak in the azimuthal velocity profile that  is propagating. Equation (3.3a) states 
that  the circulation is simply exponentially decaying, 

drldt = -r, (3.4a) 
on curves ~ the characteristics ~ determined by 

dsldt = r. (3.4b) 
Thus we obtain the exact solution for arbitrary initial profiles, T(s ,O)  = To(s ) ,  in 
implicit form as m, t )  = To([) e-t, (3.5a) 

at curves s ( t , t )  = t+ro(5) ( 1  -e-?. (3.56) 
This yields a parametric relation T ( s ,  t )  by elimination of the parameter [, which is 
the initial position: 5 = s(6,O). 

Example I :  The Rankine vortex 
The highly idealized model of a vortex having a core which is in solid-body 

rotation and an irrotational exterior, the Rankine vortex, is perhaps physically 
unrealistic, but offers the only example for which the evolution (both due to 
nonlinear and free-surface effects) can be made explicit. Thus, let the initial 
azimuthal velocity profile of the vortex be given by 

(3.6) 

0 FLM 246 
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0 r 5 

t = O  

r 
FIGURE 1. Evolution of a cyclonic Rankine vortex with 6 = t during spin-down due to Ekman 
circulation. (a) Azimuthal velocity and ( b )  vorticity profile at successive instances of time, t .  

in which R is the dimensionless tank radius (given in terms of the initial vortex scale 
L ) ;  then 

(3.7) 

where the position of the peak velocity is given by 

which therefore propagates away from its initial radius a t  r* = 1 to its ultimate 
radial position at r* = (1 + E ) ; .  Equation (3.7) shows that the velocity profile 
nevertheless retains its structure so that the vorticity remains concentrated in the 
widening (e > 0 ) ,  or narrowing (e < 0) core, while simultaneously decaying: 

Example 2 : Two smooth vortex prqfiles 
Kloosterziel(1990) observed that the diffusion equation on the infinite interval can 

be solved by a one-parameter (a )  family of self-similar profiles, which offer a good 
diagnostic set to qualify observed vortex profiles. The two extremes, a = 1 and 
a = 3, reached by the vortices in the laboratory experiments, correspond to two 
profiles more commonly met in literature. The a = 1 profile, the Lamb vortex 
(Saffman & Raker 1979), 

uo(r)  = ( A / r )  (1 -exp ( - ? / B ) ) ,  (3.10) 

with A = 1.398,. . and B = 0.796.. . has a vorticity profile, which, for a cyclonic 
vortex, is entirely positive. I n  a typical laboratory experiment the initial vortex 
profile can be typified by a value of a somewhere in between 1 and 3, while its 
subsequent state moves to one that can be described by a = 3, the Gaussian vortex 
(whose stream function is Gaussian), with a velocity profile given by 

w,,(r) = rexp (i(1 - r2 ) ) .  (3.11) 
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w -  

0 1 r 1 w- r 4  

FIGURE 2. As figure 1 but for a cyclonic Gaussian vortex (8  = 1.5). Note the ‘steepening’ of the 
azimuthal velocity profile, a t  the ‘front-side ’ of the propagating peak. 

Note that the amplitudes of these two velocity fields are chosen such that v0( 1 )  = 1 ,  
so as to comply with the adopted scaling. In  these cases the relation for w(r, t )  cannot 
be made explicit, but the parametric relation (3.5) can be directly used to obtain the 
evolution as given in figure 2 .  

It is well-known that the evolving profile, ‘propagating’ in the radial direction, 
may exhibit breaking, i.e. multivaluedness. This occurs when two characteristics 
cross each other (Whitham 1974, p. 22) : two neighbouring characteristics, originating 
from different initial positions 6, then occupy the same position in the (s, t)-plane, so 
that 

ds/df; = 0, 
or, from (3.5b), when 

1 +rh(f:) ( I  -e-‘) = 0, (3.12) 

where the prime designates a derivative of the dependent variable. A positive time 
of breaking, t,, exists only when T,(f:) < - 1, for some 6. Conversely, there will be no 
breaking when 

1 +r;(<) > 0, 0 < f: < $2, 

in contrast to the conclusion drawn in Kloosterziel & van Heijst (1992)’ that every 
velocity profile will continue to steepen (and ultimately ‘break’). In  terms of the 
original variables, this dynamic stability requirement is translated into the condition 

w + 2  2 0, 0 < r < R,  (3.13) 

where wo(r ) ,  denotes the vorticity of the initial profile: wo(r) = l/ri3/i3r(rvo). True 
breaking will, of course, be inhibited by diffusive effects (neglected thus far) which 
may then provide the smoothing which connects the two disjoint azimuthal velocity 
values a t  either side of the shock in the case e > 0 (see Venezian 1970, who derived 
a Burgers’ equation for the shock in azimuthal velocity which develops during spin- 
up from rest), or at the origin in the case F < 0. Indications of such a shock in the 
azimuthal velocity were present in some of the experiments of  R. C. Kloosterziel 
(personal communication). 

The examples considered above offer some insight into this stability requirement. 
For the cyclonic Rankine (equation (3.6)) and Lamb (equation (3.10)) vortex the 
vorticity is always positive, so that, from (3.13), these vortices will always remain 
stable. Only the cyclonic Gaussian vortex, (3 .11) ,  has negative vorticity lobes, 
outside the core, with an extreme value of  - 2e-i a t  r = 2. Therefore, these vortices 
are stable for e < ei, see figure 3. For anticyclonic vortices the maximum vorticity of 

53 
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0.1 - 

4 
Y 0 1 

FIGURE 3. Evolution of a marginally stable cyclonic Gaussian vortex (c  = d ) ,  i.e. which has 
zero absolute vorticity ( E W ~ + ~  = 0). 

all three profiles is a t  (and near) the origin, where instabilities, when occurring, first 
appear. The stability requirement, in this case, leads to the following conditions : 

Rankine vortex : c > - 1, 
Lamb vortex : e > - B / A  w - 0.569, 
Gaussian vortex : E > -e-t M - 0.607 ; 

which are therefore more susceptible to instabilities (Kloosterziel 1990). These, and 
the previous requirement for the cyclonic Gaussian vortex, are all satisfied for the 
restrictions under which the linear Ekman pump is valid (c < 1 ) .  In  the Appendix it 
is argued that this linear Ekman pump, however, also applies to larger values of the 
Roswby number, up to the stability boundaries given for the anticylonic vortices 
above. lndeed incorporation of the next-order Ekman pumping, considered briefly in 
$3.2, does not really alter this stability condition (although, in that case conclusions 
have to  be drawn from numerical analyses). 

The ‘breaking’ or dynamic stability criterion, (3.13), is remarkable since it is 
virtually equivalent to Rayleigh’s famous kinematical stability criterion. This 
criterion states that ,  in an inertial frame of reference, an axisymmetric stationary 
flow with azimuthal velocity profile, v,,(r), will be stable when the squared circulation 
is a monotonically increasing function of radius, i.e. 

(dldr) (TV, , )~  2 0, 0 d r < R. (3.14) 
Kloosterziel & van Heijst (1991) argued that, in a rotating frame of reference, this 
can be written as 

( c v , + r ) ( e ~ , + 2 ) > 0 ,  O G r  G R ,  (3.15) 
which states that the product of ‘absolute velocity’, ev0 +r, and absolute vorticity, 
emo + 2, should be positive. Rayleigh’s (1916) result is derived by an energy argument 
in which two concentric fluid rings are imagined to be interchanged, while conserving 
their angular momentum. By comparing the kinetic energy before and after the 
exchange i t  follows that when (3.14) is satisfied the kinetic energy increases: a 
situation that will never be accomplished in the absence of some source of energy. 
Conversely, when (3.14) is not satisfied, the kinetic energy decreases: energy will 
become available for the unstable motions. Stability condition (3.14), or (3.15), can 
be obtained more rigorously by considering the stability of a perturbation of a 
circularly symmetric initial azimuthal velocity profile in an inviscid fluid, contained 
in an (or in between two) infinitely long cylinder(s), oriented parallel to the rotation 
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FIGURE 4. Sketch of the cross-section of the primary circulation (normal to the plane, denoted by 
circles) and secondary (Ekman) circulation (denoted by solid arrows) of an evolving vortex. The 
forces in the interior are depicted as open arrows, the inwardly directed pressure-gradient one being 
depth-independent and close to the bottom - where friction impedes the azimuthal flow - in excess 
of the Coriolis and centrifugal forces. The inwardly driven mass flux is turned into a vertical mass 
flux in the core of the vortex, which in turn produces a radially outward flow, which advects 
angular momentum outwards. 

axis (Chandrasekhar 1961, p. 275). In  contrast, (3.13) is obtained as the stability 
criterion of a finite-amplitude vortex in a shallow container of finite depth, in which 
viscous effects near the bottom are of predominant importance to the evolution of 
the inviscid interior. Physically, the stability requirement (3.13) can be explained as 
follows : breaking occurs when the radial gradient of azimuthal velocity and hence of 
relative vorticity (and in turn absolute vorticity) becomes infinitely negative. Since 
Kkman pumping can change only the magnitude and not the sign of the absolute 
vorticity, the occurrence of breaking implies that the initial absolute vorticity must 
have been negative somewhere. Conversely, when the initial absolute vorticity is 
everywhere positive, breaking cannot occur. However, despite the differences in the 
physical circumstances, it  is striking to observe how both stability criteria practically 
coalesce. 

In  fact, under mild conditions the two are mathematically equivalent. This can be 
seen as follows. Condition (3.15) can, once again, be rewritten in terms of the (scaled) 
angular velocity 

SZ = e v / r ,  (3.16) 

as 2r(SZ + 1 )  (SZ + 1 +$r X2/ar)  > 0. (3.17) 

For cyclonic vortices SZ > 0 and the second factor, corresponding to (3.13), is clearly 
determining the stability. For anticyclonic vortices SZ < 0. For the special class of 
vortices having a monotonically increasing angular velocity profile - a condition met 
with by each member of the class of profiles referred to in example 2 above ; a class 
that fits observations of velocity profiles in the laboratory well - condition (3.15) is 
again entirely equivalent with the simpler (3.13). For, if SZ+ 1 changes sign a t  some 
r (assuming that the vortex is sufficiently localized that its absolute vorticity is 
positive a t  the tank wall), the second factor in (3.17) changes sign somewhere else, 
because ri32/ar >, 0, thus leaving an interval of r-values where (3.15) is violated. In 
that case, however, the second factor in (3.17) changes sign by itself and thus (3.13) 
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is also violated. The two criteria, then, are identical for this class of angular velocity 
profiles. Note that for this restricted class of anticylonic vortices the stability 
criterion will be first violated a t  the centre of the tank. 

The critical value of e,  derived in (3.13), now gives the Rossby number after which 
breaking sets in. Note that prior to this a two-dimensional instability may have 
started (Michalke & Timme 1967; Carton & McWilliams 1989), leading to non- 
axisymmetric vortices like the tripole, also observed in laboratory experiments 
(Kloosterziel & van Heijst 1989; van Heijst & Kloosterziel 1989; van Heijst, 
Kloosterziel & Williams 1991). 

3.2. Nonlinear Ekmnn pumping 
When Rossby numbers are not small, one needs an improvement of the zeroth-order 
(linear) Ekman pumping velocity, such as is obtained in a perturbative treatment of 
the boundary-layer dynamics. This is carried out in the Appendix, where the first- 
order (non-linear) Ekman pumping velocity has been calculated, (A 5 ) .  Tnserting the 
combined vertical Ekman pumping velocity, to$') + cwg), or rather the radial velocity 
which it implies by continuity, into (2.10b) yields an improved evolution equation for 
the azimuthal velocity. An autonomous equation like (3.3), i.e. without any explicit 
occurrence of the (transformed) radial coordinate, is obtained in terms of B, (3.16), 
and radial coordinate p = In?, 

as asz ( 1 
7 

at 5 20 ap -+B 1--Q--- l + Q + -  = O .  (3.18) 

The need for this improved Ekman pumping was, implicitly, expressed by 
Kloosterziel & van Heijst (1992) when observing the breakdown of their model 
(essentially a numerical evaluation of (3.1)), outside the core of the vortex, in 
comparison to their experimental results. A numerical evaluation of (3.18), using an 
observed azimuthal velocity profile as initial field, shows that the extra Ekman 
pumping term does not significantly alter the previous results (even though 
e = 0.45). This has to be attributed to the smallness of the numerical factors 
preceding the added terms, alluded t o  in the Appendix. In  fact, Kloosterziel & van 
Heijst remark that even for small values of the Rossby number their profiles deviate 
from those predicted by a linear analysis insofar as the velocity field a t  large radii 
drops a t  a faster rate than closer to the core of the vortex: a feature which the 
proposed extra Ekman pumping term is clearly unable to account for. 

4. Vortex evolution due to free-surface effects ( E  < 1 )  
When the Rossby number is vanishingly small (e 4 1 )  the decay of a concentrically 

located axisymmetric vortex, whose initial azimuthal velocity structure is given by 
q, (r ) ,  is determined by viscous effects near the bottom, modified by effects due to a 
free surface. I ts  evolution follows from (2.10), setting e = 0, together with (A 4) and 
is given by 

2 v = -  -+2u=0,  (4.la, b)  a7 av 
ar' at 

aT 1 a i a  F - + - - ( r u ( l + ~ ~ r 2 - z O ) )  = - - ( rv ) .  
at r ar 2r ar 

(4.1 c) 

The last equation shows that the Ekman pumping a t  the top of the bottom boundary 
layer (the right-hand-side term) does not only contribute to the meridional 
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circulation, but can partly be offset by a displacement of the free surface. These 
equations can be combined into one single equation for the elevation, 7 : 

or, for the azimuthal velocity, v :  

4F---(--(r-(1+prz-zo)+rw av a i a av 
at ar r ar at 

( 4 . 2 ~ )  

(4.2 b)  

A clear physical interpretation of (4.2) is given by O'Donnell & Linden (1991), 
who interpret (4.2 a )  as an evolution equation of quasi-geostrophic vorticity, 
w = ( l / 2 r )  (a/ar) ( rdq/&) .  Following these authors, rewriting (4 .2a)  as 

(1 +p+ a-o a7 a 
Z") - = --o + 2E'-+ 2u- (gFr2- 2") at at ar (4.3) 

shows that the decay of the vortex is induced by vortex compression due to Ekman 
pumping (or suction), free-surface variations, or advection by the meridional 
circulation; physical effects which correspond to the three terms on the right-hand 
side of (4.3) respectively. The choice of a parabolic bottom profile, zo = $r2, 

mimicking the free-surface parabola, clearly eliminates the last vortex stretching 
term. As discussed in O'Donnell & Linden (1991) in the context of solid-body spin- 
up in a flat-bottomed cylinder, spin-down near the axis (where the radial advection 
is absent) is delayed because the Ekman pumping is offset by the raising of the free 
surface. Even though these two effects cooperate near the tank wall, spin-down is 
again delayed since the combination of the two will now be offset by the advection 
and stretching of background vorticity. It turns out that the combined effect is 
constant, so that the fluid remains in solid-body motion : the delay factor is radially 
uniform and proportional to the Froude number, see figure 5 (a) .  In contrast, when 
there is no background vorticity gradient, as when the bottom is parabolic, the spin- 
down near the tank wall is fast (i.e. having a nondimensional e-folding timescale 
O( l)), since the vortex compression, produced by Ekman pumping and descent of the 
free surface, is unmatched, whereas near the axis these two effects oppose each other 
and the spin-up will again be delayed by a factor proportional to  the Froude number. 
In  the latter case, therefore, spin-up is a more complicated function of radial position 
(Cederlof 1988), see figure 5 ( b ) .  The difference between both geometries in spin-down 
timescales a t  the tank wall also follows from a consideration of the boundary 
condition. Since the fluid, which is displaced during spin-down, conserves mass, 

rydr = 0, sf (4.4) 

the evolution of azimuthal velocity a t  the tank wall is a simple exponential in time. 
This follows by integrating r times ( 4 . 2 ~ )  over the tank radius, employing (4 . la )  to 
eliminate the freesurface gradient and using the fact that  the azimuthal velocity 
vanishes a t  the centre: 

( 1 + 1 ~ ~ 2 - ~ ~ ( ~ ) ) a ~ / a t + w  = 0. (4.5) 
For a parabolic bottom the boundary condition is 

v(R,  t )  = wo(R) e+, (4.6) 
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FIGURE 5 .  Sketch of free-surface effects in solid-body spin-down in (a )  a flat-bottomed cylinder and 
( b )  a cylinder with a parabolic bottom. In  both cases, close to the rotation axis the stretching of 
the vortex tube due to Ekman pumping is offset by the raising of the free-surface (whose initial 
shape is denoted by a solid line). In the outer regions, however, the surface is descending and thus 
adds to the Ekman pumping. In (a) these two are offset by the stretching of background 
('planetary') vortex tubes due to the (linear) radial outward flow. In  (b )  the background vorticity 
is uniform and thus does not counteract the two compressing mechanisms. Hence vorticity in these 
outcr regions is quickly reduced and the spin-down of the outer region is relatively fast. ( c )  In a 
vortex the vorticity profile is non-uniform (see figure 4) and the previous picture is altered in the 
outer regions, where the vorticity is negative, which consequently leads to Ekman suction, rather 
than pumping. 

Thus the decay factor for solid-body spin-down (for which R = 1, as in this case the 
tank radius is the only lengthscale involved) is increased by a factor 1 +i$. This is 
essentially the factor determined by Kloosterziel & van Heijst (1992) and O'Donnell 
& Linden (1991) ; the slight difference between our expression and theirs is due to the 
use of a different scaling. 

Considering the spin-down of vortices, we can anticipate that the decay of the core, 
which is close to  solid-body rotation, will be faster than in the more remote parts of 
the vortex, i.e. a t  distances beyond the radius where the azimuthal velocity profile 
has its maximum, as the Ekman pumping in these outer regions of the vortex will be 
small, due to the smallness of the vorticity of the overlying fluid. Also, since the 
azimuthal velocity has to satisfy (4.6) or (4.7) at the tank wall, the decay of a vortex 
in a parabolic basin will be relatively fast compared to that in a right-circular 
cylinder . 

In the next two sections, we will consider the spin-down of a free-surface fluid in 
a parabolic and flat-bottomed tank respectively. In  both cases it will be convenient 
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FIGURE 6. Separation of the initial azimuthal velocity profile into a particular part (which is 
linear with radius) and a homogeneous part (which vanishes a t  the tank wall). 

t o  employ the linearity of the evolution equation, (4.2b), to split the solution into a 
particular, solid-body part, vJr,  t ) ,  having a linearly increasing azimuthal velocity 
which satisfies either (4.6), or (4.7) a t  the tank wall, and the homogeneous remainder, 
vh(r, t ) ,  whose azimuthal velocity has to  vanish at the tank wall: 

Wh(R, t )  = 0. (4.8) 

4.1. Vortex evolution in a parabolic basin 
When the bottom is parallel to the equilibrium parabolic shape of the free surface, 

zo(r )  = L$r2, 

up to some radius r = R, the evolution of a vortex with initial profile 

is, from (4.2b), given by 
,NT,  0) = V & T )  

(4.9) 

subject to the boundary condition (4.6) at r = R. The mathematical advantage of the 
present geometry is that (4.9) is separable, as was observed by Berman et al. (1983) 
for a two-layer fluid and Cederlof (1988) for a homogeneous fluid. The temporal part 
is a simple exponential and the radial part is determined by a Bessel equation. The 
general solution, regular a t  the centre of the tank, therefore reads 

with 

m 
v ( r ,  t )  = C A ,  Jl(j, r / R )  esnt, 

41=1 

S ,  = - jk / ( j ;  +43R2), 

(4.100,) 

(4.10b) 

where J,(x) denotes a first-order Bessel function of the first kind and j ,  are the 
successive zeros of Jl(x). The Froude number FR2 appearing in (4.106), which 
determines the decay rate of the constituting eigenmodes, is based solely on the tank 
radius and is thus independent of the vortex size. The initial velocity field is split in 
a solid-body part and a homogeneous part, which satisfies (4.8), as discussed above 
(see figure 6) : 

go(?) = vno(r) + u h o ( ~ ) ,  
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with Wpo(T) = rvo(R)/R, who(r) = uo(T)-uupu(T). (4.1 1) 

The Ressel functions J l ( j n r / R ) ,  with weight function r ,  form a complete set on the 
interval 0 < r < R.  The undetermined coefficients.4, of the Fourier-Ressel expansion 
(4.10) therefore follow from a projection of the initial profile on each of these 
eigenfunctions (Carslaw & Jaeger 1959, p. 196). The resulting solution thus reads 

U P ,  t )  = WP(T> t )  +%(T, t ) ,  (4.12 a) 

with 

and 

(4.12b) 

The particular part is related to Cederlof's (1988) solution, who calculated the free- 
surface shape during a solid-body spin-up process. Note that the first and third terms 
in (4.12b), i.e. those proportional to e-t, in fact cancel (Prudnikov, Brychkov & 
Marichev 1986, p. 690, in combination with the recurrence relation of the Bessel 
functions). The remaining series related to the second term, however, when truncated 
at  a certain n = N ,  displays the Gibb's phenomenon a t  the tank wall; a feature from 
which the form presented in (4.12b) is free. 

lCxample : th8e Rankine vortex 
As an example we consider the Rankine vortex, whose initial profile is given by 

(3.6), for which the evolution can be determined explicitly. For more realistic vortex 
profiles, the integral in (4 .12~)  has to be evaluated numerically. Inserting (3.6) into 
(4.11 ) yields the following initial profiles for the particular and homogeneous parts 
respectively : 

VP0(T) = r /R2 ,  (4.13a) 

(4.13b) 

Thus the evolving particular and homogeneous parts can be obtained from (4.12) and 
read 

( 4 . 1 4 ~ )  

(4.14b) 

in which Jo(x )  denotes the zeroth-order Bessel function of the first kind. In most 
compact form this can be combined as 

but a truncated form of this does again show the Gibb's phenomenon, absent in the 
addition of ( 4 . 1 4 ~ )  and (4.14b), though not in its truncated spectral vorticity 
representation. Figure 7 shows the decaying Rankine vortex a t  a few instances. 



The spin-down of barotropic axisymmetric vortices 133 

I 
5 r 5 0  

FIGURE 7.  Free-surface effects on the spin-down of a cyclonic Rankine vortex in a cylinder having 
a parabolic bottom (left) and a right-circular cylinder (right). Azimuthal velocity (a)  and vorticity 
( b )  profiles (for successive instances of time, t )  and decay-time (c) as a function of radius. Note that 
the wiggles in the vorticity profile of the Rankine vortex (and in the decay time for small radii) in 
a parabolic basin are due to truncation of the infinite series. 

r 0 

As remarked, from a geophysical point of view the use of a cylinder with a 
parabolic bottom is attractive since its background vorticity is uniform. The 
evolution of a vortex in such a basin, under the influence of a free surface, may 
therefore model the evolution of f-plane vortices more closely than those in the flat- 
bottomed cylinder. When the vortex scale is much less than the tank radius (such 
that the dimensionless tank radius R approaches infinity) the Fourier-Bessel 
expansion turns into a Fourier-Bessel integral. The particular part of the azimuthal 
velocity field vanishes in this case and the vortex profile, following from (4 .12~)  by 
a limiting procedure (Nikiforov & Uvarov 1988, p. 316), evolves as 

k6,(lc) J , (kr )  exp (4 .15~)  

where B,,(k) is the Fourier-Bessel transform of the initial azimuthal velocity field, 

(4.15 b )  
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From (4.la) the elevation field then evolves as 

wit,h 

(4.15 c) 

(4.15d) 

Even though vortices in the ocean are often damped by lateral friction (Mied 1989), 
there are circumstances where bottom or surface (when covered with sea ice) friction 
is dominant. The latter applies to the eddies in the Weddell Sea as Ou & Gordon 
(1986) have shown. Except for the entrainment which they included the eddy evolves 
as in (4.15) and in particular the decay time increases with increasing Froude 
number. As in the decay of a fluid which initially is in solid-body rotation (Cederlof 
1988) this decay time is a function of radius: the decay is relatively fast a t  the outer 
edge and in the core, but slower in between (see figure 7c). 

4.2. Vortex evolution in a $at-bottomed cylinder 
When the bottom of the cylinder is flat, x,,(r) = 0, thc evolution of a vortex with 
initial profile 

is, from (4.20) given by 
V ( T ,  0) = vo(y) 

(4.16) 

subject t,o boundary condition (4.5) : 

(1+$FR2)av/at+v = 0 a t  r = R, (4.17) 

and a requirement that  v(r, t)  vanishes a t  the centre of the tank. Introducing the 
angular velocity 

i2 = v / r  (4.18a) 
and the radial coordinate 

s = L p - 2  (4.18b) 
into (4.16-4.17) yields 

2--- s-(1+s)+ssz = o ,  
at a s 2  a 2 (  ai2 at 1 (4.19a) 

and the boundary condition 

(l+S)i3Q/at+SZ = 0 a t  s = S, (4.19 b )  

where s = -gw.  (4.20) 

At the origin we require f2 to be finite: 

Q < m  a t  s=O.  (4.21) 

The only place where the Froude number enters is via the position of the boundary, 
s = 8. Since two of the terms in (4.19a) cancel, this equation can be written as 

(4.22) 
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In  particular (4.22) is satisfied by any +independent angular velocity of arbitrary 
temporal behaviour; a degree of freedom which we use to simplify the boundary 
condition a t  the tank wall by writing f2 as the sum of a particular part, SZ,, satisfying 
(4.19b): 

SZ,(s, t )  = 52,,(X) e-tl(l+s), (4.23) 

and a homogeneous part, SZ,, satisfying (4.22), but vanishing at  the tank wall. The 
particular solution, (4.23), corresponding to a solid-body motion of the fluid, was 
previously obtained by Kloosterziel & van Heijst (1992) and O'Donnell & Linden 
(1991). In  the latter study, the increased spin-up timescale, determined by the 
denominator of the exponent in (4.23), has been carefully verified in a number of 
laboratory experiments. 

The evolution of the remaining initial part of the angular velocity profile: 

s2h(s, 0) szh()(s) = -52p()(s)y 

is determined by the general solution of (4.22). This is obtained by multiplying this 
equation by s and introducing the auxiliary variable 

h = 8 2  u,,/as, (4.24) 

leaving 

With the new radial coordinate 
t = 1 +s,  

this becomes 

or, equivalently, 

Putting h = awlat ,  
we observe that the equation can finally be contracted to 

The general solution of this equation is given by 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

where W(E), 47) and b(7) are arbitrary functions, t.0 be determined by the boundary 
and initial conditions. As remarked in Myint-U & Debnath (1987, p. 3) ' the selection 
of a particular solution satisfying the supplementary conditions from the general 
solution of a partial differential equation may be as difficult as, or even more difficult 
than the problem of finding the general solution, because the general solution 
involves arbitrary functions'. In  the present problem we can simply dispense with 
the functions 47) and b ( ~ )  (by setting them equal to zero) in view of the simple form 
of the boundary condition. The remaining degree of freedom, W(€J ~ which, expressed 
in the related radial coordinate 8 ,  is denoted as w,(s) ~ as well as the solution, ah($, t )  
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itself are entirely determined by the initial profile Qhn(s). From (4.24)’ (4.26) and 
(4.27) we obtain 

(4.30) 

a diagnostic relation that can be used ‘both ways’; i.e. given the initial profile of the 
angular velocity, SZhO(s), we may determine wO(s) from it :  

wn(s) = ~ u 2 ~ d u + w , ( 0 ) .  au (4.31) 

By a partial integration and setting w,(O) = 0 to ensure regularity of wo(s)/sz - a 
condition whose necessity follows from the required regularity of Q, at s = 0; see 
(4.33) below - this can be written as 

(4.32) 

Conversely, (4.30) also provides us with the general solution, &(s, t ) ,  at an arbitrary 
time. By integrating (4.30) from an interior value s to the boundary S we obtain, 
employing the fact that the angular velocity vanishes at the tank wall, 

(4.33) 

Inserting the restricted solution (4.29), expressed in terms of s, 

w(s, t )  = wo(s) ePt’(l+$), (4.34) 

with t,he initial field wo(s) given by (4.32), into (4.33) finally yields 

where we have used the fact that Q,,(#) = 0. One may check that the angular 
velocity satisfies (4.22), vanishes identically at  the tank wall, remains finite at the 
centre and is equal to the initial profile by construction. Note the highly convoluted 
way in which the initial angular velocity profile, SZ,,(s), appears in the final 
expression of the angular velocity at a specific time t and ‘radius’ s. 

The azimuthal velocity profile itself is, as in (4.12u), given by the sum of the 
particular and homogeneous velocity fields that follow from a multiplication of (4.23) 
and (4.35) by r ,  and replacing the introduced variables s and S with the aid of (4.18b) 
and (4.20). 

Example : the Rankine vortex 
It is again useful to consider the Rankine vortex, split into the solid-body and 

remaining parts, (4.13). The initial profile of the variable w is determined by (4.32) 
and, for this case, given by 

(4.36) 
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With this initial profile the azimuthal velocity structure as a function of time is given 
as 

v(r ,  t )  = r(Q&, t )  + (l/R") e-t'(1+iFRZ) ) 7  (4.37a) 
where the homogeneous angular velocity profile is given by 

ir (1 + 3) + 6 - T (1 + 3) (Ei ( b ~ )  - Ei (a7)) , (4.37 b )  1 - -- 

in which the following piecewise-defined (but continuous) functions appear : 

r 6  1,  

The remaining variables are defined as 

(4.37 e )  

The function Ei(z) in (4.37b) denotes the exponential integral. Note that the core of 
the Rankine vortex remains in solid-body rotation ; nevertheless the velocity profile 
manages to become continuous and spread outwards (see figure 7). In  comparison t o  
the decay of a Rankine vortex in a cylinder with a parabolic bottom, the left-hand 
side of figure 7,  it is clear that the decay in a flat-bottomed cylinder is prolonged by 
the presence of a background vorticity gradient. This is due to the production of 
negative relative vorticity in the outer region of the vortex by outward advection of 
low-vorticity fluid in addition to the production of this by the descending free 
surface. Only the latter mechanism was also present in the parabolic basin. 

The evolution of other initial profiles cannot usually be described in terms of 
special functions and have to be obtained by integrating the expressions in (4.35) 
numerically. 

5. Conclusions 
The decay of a barotropic axisymmetric vortex in a rapidly rotating (Ei < 1 )  

cylinder of moderate aspect ratio (6 = H / L  < O( 1)) is due to  bottom friction. In the 
classical case, in which both nonlinear and free-surface effects are absent ( e  = F = 0) ,  
this decay due t o  Ekman pumping is self-similar, has the position of the peak of the 
azimuthal velocity profile fixed and has a decay time given by the Ekman timescale 
TE = 52;'E-t (Greenspan & Howard 1963). In  regions where the relative vorticity of 
the fluid is positive (negative), friction in the bottom layer will lead to Ekman 
pumping (suction) a t  the top of this layer, hence compressing (stretching) vortex 
tubes in the interior, and by conservation of potential vorticity will reduce (increase) 
the vorticity in the fluid, thus bringing it closer t o  the background vorticity. 

When the Rossby number is not small ( 6  + 0) nonlinear advection of relative 
vorticity by t h e  radial Ekman flow in the interior will cause the position of the peak 
in the azimuthal velocity profile t o  propagate outwards or inwards for cyclonic and 
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anticyclonic vortices respectively. Since the propagation speed is proportional to the 
strength of the azimuthal velocity this in turn will lead t o  a steepening of the 
azimuthal velocity profile in the radial direction. Indeed when the absolute vorticity 
of the initial profile is negative somewhere, this profile will develop into a shock 
within a finite time. This discontinuity in azimuthal velocity will in reality be 
smoothed out by viscous diffusion (neglected here) and, when the scale of the shock 
is much smaller than the radius a t  which the shock appears, can be described by 
Burgers' equation (as in Venezian 1970). For anticyclonic vortices having a 
monotonically increasing angular velocity profile this shock will always develop at  
the core of the vortex. The dynamical condition a t  which multivaluedness starts to  
appear is, surprisingly, virtually equivalent to Rayleigh's (191 6) kinematical 
criterion, despite significant differences in the physical mechanisms involved. 

When the free surface is dynamically active, as when the Froude number is not 
small (4' 4= 0)) the peak in the azimuthal velocity structure is similarly observed to  
propagate outwards, except that the total profile spreads out. This and the related 
increase in decay time (with proportionality factor related to the Froude number) are 
due to  the ability of the free surface t o  partially offset the compression (and 
stretching) of vortex columns in the positive (negative) vorticity regions of the 
vortex. The relatively fast decay of a vortex in a cylinder having a parabolic bottom 
as compared to one which is flat bottomed is because the decay factor at  the tank 
wall is proportional to the depth of the fluid at the wall, which is obviously larger in 
the latter case (assuming that the central depth is the same in both cases). 

The author acknowledges the great benefit that he obtained from discussions on 
the subject treated in this paper with Ruud Kloosterziel, Gert-Jan van Heijst, Ulf 
Cederlof, Huib de Swart and Sjef Zimmerman. He is also grateful to Herman 
Ridderinkhof for help with numerical computations and to a referee for his 
comments on the physical interpretation of the breaking criterion. 

Appendix. The Ekman pumping velocity 
Near the bottom viscous effects require the velocity to decrease to zero quickly 

and, correspondingly, the vertical scale is set by the Ekman scale HE: rather than by 
the total depth, H .  In this boundary layer an O(U) change, which the azimuthal 
velocity field experiences when brought from its inviscid value in the 'interior ' region 
towards zero a t  the bottom, produces an O ( U )  change in the radial velocity field (due 
to the Coriolis force), which is thus not small any longer, as it was in the interior. The 
non-dimensional equations expressing the dynamics in the boundary layer therefore 
follow from (2 .5 )  by a subsequent rescaling : [u, z ]  + [E%,Eb]. Setting E = 0 again 
in the resulting equations shows that the pressure field remains hydrostatic and the 
pressure gradient is thus given by its value a t  'infinity', i.e. in the interior: 

ap'/& = t.v",r + 2v,. (A 1) 

Also, the time-derivative terms drop out, such that the evolution of the boundary- 
layer field is entirely determined by (slaved to) the evolving azimuthal velocity field, 
v,(r ; t ) .  The resulting boundary-layer equations in this rotating frame of reference 
are thus given by 

v: a2u 
E u-+w--- -2W+E-+22vm =-, ( E  E?) r a 2 2  
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a2v aw 1 a e u-+w-+- +2u = -, -+--(ru) = 0, ( i~ Y )  aza az r ar 

which, using the variables 

can be expressed concisely as 

E ( J ( $ ,  x) + $ a x / a z + x z  + 52:) + 2 ix+G,) = azx/azZ, (A 3) 
where the Jacobian J($ ,  x )  3 (a$/aE) (axlaz)  - (ax/a[) (a$/ax). By continuity the 
radial boundary-layer flow produces a non-zero vertical flow far away from the 
boundary : the Ekman pumping - or suction velocity, wE, whose determination in 
terms of the prescribed interior azimuthal velocity field forms the ultimate goal of 
the boundary-layer analysis. 

An analytic solution to (A 3), subject to the boundary conditions 

x = $ = O  at z = O  
and X-fi52, as z+m, 

for arbitrary interior profiles, Qm(t;t) and arbitrary Rossby numbers, 6 ,  is not 
known. For small values of the Rossby number, 1 ~ 1  < 1 ,  however, (A 3) linearizes and 
we retrieve the familiar Ekman equations, whose Ekman pumping velocity is given 
by : 

The dimensionless Ekman pumping velocity is therefore equal to half the 
dimensionless vorticity of the fluid directly overlying it. A regular perturbation 
expansion in the Rossby number, C, yields its first-order correction, which reads 

As is obvious from (A 3) the Jacobian term vanishes identically in the case of solid- 
body spin-up, or spin-down, as 52, is then independent of E and so will 52 and $ be: 
we retrieve von KarmBn’s (1921) similarity equations. In this circumstance, which 
can only occur over an infinitely large disk, the Rossby number has its usual meaning 
in this context, as the ratio of the angular velocity of the fluid ‘infinitely’ far above 
(and relative to)  the disk and the angular velocity of the disk : t: = (52, - 52,)/0,. The 
Ekman pumping velocities (and boundary-layer structure) for this idealized case 
have been computed by many authors (see Greenspan 1968) for arbitrary values of 
the above-defined Rossby number. It turns out that, for certain parameter ranges, 
the stationary state is not unique (as different inviscid cells, separated by viscous 
interlayers, may develop), or does not even exist (Zandbergen & Dijkstra 1987). 

The relationship between Ekman pumping and angular velocity at infinity for the 
single-cell case was determined numerically by Rogers & Lance (1960). The linear 
relationship, (A 4), was thus observed to apply over a large range of Rossby numbers 
(lei < 0.6). Wedemeyer (1964), studying spin-up from rest in a finite cylinder, 
extended this linear relationship t o  apply over the entire range of interest 
( -  1 < e < 0) and his analytical results compared fairly well with the actually 
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observed evolving azimuthal velocity field in the interior. despite the facts that the 
spin-up took place in a finite cylinder and that the velocity profiles were not self- 
similar during the spin-up process, as the idealization of (A 3) to von Karmcin's 
similarity theory presumes. Weidman (1976) took a best-fit curve to the numerically 
determined relationship between the Ekman pumping velocity and the Rossby 
number of Rogers & Lance (1960), which included the non-monotonic relation 
between the two for Rossby numbers slightly above 6 = - 1. The exact solutions 
using this parametrization were, however, shown to be of dubious physical content 
(Renton 1979) as the vorticity, during the spin-up process, showed an unphysical 
maximum at  an intermediate radial position. Evidently, an evaluation of (A 3) in 
response to a non-solid-body interior velocity field, with the vorticity stretching 
Jacobian term included, is required. The perturbation approach, as given by (A 6) ,  
can only be a first step in this process, even though it  seems that (A 5 )  may also be 
valid for relatively large values of the Ekman number in view of the convergence 
provided by the numerical smallness of the coefficients leading the higher-order 
approximations. 

When the bottom is sloping the Ekman pumping velocity is modified by a 
geometric factor (Greenspan 1968). Like Cederlof (1988), we shall assume that the 
parameter which measures this modification, SF, is small, allowing the use of (A 4) 
directly (for small Rossby numbers). 
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